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Abstract
The main features of the phase diagram of the Fe–Pd system are characterized by
phase separation in the Fe-rich region and appearance of two ordered phases in
the Pd-rich region. The total-energy FLAPW electronic structure calculations
are attempted on a set of selected ordered compounds as well as Fe and Pd to
clarify the origin of these features. It is revealed that (i) magnetism plays a
dominant role in the phase stability of the system and (ii) the system has an
intrinsically large driving force for ordering, while the elastic energy originating
from size mismatch causes the phase separation in the Fe-rich portion.

1. Introduction

Recently, the Fe–Pd system has been attracting broad attention due to excellent heat resistant
properties at elevated temperatures. Based on electron microscopy observation [1], it
has been revealed that the coherent precipitates of L10 ordered phase distributed in the
ferrite matrix are responsible for improving the creep resistance. One of the present
authors attempted phenomenological calculation [2] of L10-disorder phase equilibria based
on phenomenological Lennard-Jones-type pair potentials determined by experimental data
of heats of formation, cohesive energies and lattice constants. Although the resultant phase
diagram was quite reasonable and reproduced the transition temperature quite satisfactorily,
such a phenomenological approach by no means clarifies the essential origin of the phase
stability of the system. Following this preliminary calculation, the present study is undertaken
to clarify the physical origin of the phase stability of the Fe–Pd system.

An experimental phase diagram of the Fe–Pd system [3] is characterized by three features.
The first one is the broad phase separation in the Fe-rich region. Another is the appearances of
two ordered phases with L10 and L12 structures near 1:1 and 1:3 stoichiometric compositions,
respectively, and the last one is that the congruent composition of L10 ordered phase relatively
shifts from 1:1 stoichiometry towards the Pd-rich portion.
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The major purpose of the present electronic structure calculation is to reveal physical
origins of these features. Although the final aim of the present study is to derive a phase diagram,
this claims statistical mechanics calculation at finite temperatures and will be discussed in a
separate paper [4]. Hence, this report is regarded as a precursor to the series of investigations for
the phase equilibria in the Fe–Pd system. Its organization is as follows. In the next section, we
briefly describe the procedure of theoretical calculations. The entire procedure of theoretical
analyses is quite similar to that performed for noble alloy systems by Terakura et al [5]. The
major results are presented and discussed in the third section.

2. Theoretical procedure

In view of the various magnetic transitions in the Fe-rich portion of an experimental phase
diagram, it is desirable to derive magnetic interaction energies in addition to conventional
atomic interaction energies. This is, however, anticipated to demand quite laborious
calculations. Instead of explicitly introducing magnetic interactions, in this study we performed
two types of total energy calculation, spin-polarized and non-polarized calculations on
ferromagnetic (fm) and nonmagnetic (nm) structures, respectively.

First, we employed the full-potential linearized augmented-plane-wave (FLAPW) [6]
method within the generalized gradient approximation (GGA) [7] to obtain the total energies
EFe4−nPdn

(r) for Fe4−nPdn, where n is an integer value from zero to four, as a function of
lattice constant r . The particular atomic arrangements we studied are fcc for n = 0 and 4,
L12 for n = 1 and 3 and L10 for n = 2. It should be noted that both FePd and FePd3 are
stable phases whereas Fe3Pd is a hypothetical phase, which cannot be found in the equilibrium
phase diagram. In view of the fact that the most stable ground state of Fe is the bcc-Fe with
ferromagnetic state, we also performed the additional calculation to obtain Ebcc

Fe4
(r). For all the

calculations, the cutoff energies for the wavefunction and charge density expansion are 20.0
and 80.0 Ryd, respectively. The tetrahedron method is adopted for the k-space integration.
The numbers of irreducible k points were 85 for fcc and 84 for L10 and L12 lattices. The
convergence of total energy was carefully checked (<0.001 mRyd/formula unit), and it was
assured that the convergence in the relative energy between different structures is an order of
magnitude better than the convergence in the absolute total energy. It is noted that, since our
main interest is fcc-based phases, Fe is an fcc structure throughout this study unless ‘bcc’ is
specified.

With total energies EFe4−nPdn
, the heats of formation 
En are obtained as


En(r) = EFe4−nPdn
(r) − 4 − n

4
Ebcc

Fe4
(rbcc) − n

4
EPd4(r4), (1)

where r4 and rbcc are the equilibrium lattice constants at which the total energies of EPd4 for
Pd4 and Ebcc

Fe4
for bcc-Fe4 take minimum values, respectively. Note that Ebcc

Fe4
is the energy for

four atoms. The operation given in equation (1) introduces the segregation limit as an energy
reference state. The resultant 
En is fitted in the Lennard-Jones-type potential expressed as


En(r) = an

r7
− bn

r3.5
+ cn. (2)

Then, the cluster expansion method (hereafter CEM) [8] is employed to extract effective
cluster interaction energies, vm(r), up to a nearest-neighbour tetrahedron cluster. The key
ingredient of the CEM is that a configuration-dependent energy 
En(r) can be expanded in
terms of a set of correlation functions {ξn

m},
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Table 1. Values of correlation functions.

m = 0 m = 1 m = 2 m = 3 m = 4
Null Point Pair Triangle Tetrahedron

Fe 1 1 1 1 1
Fe3Pd 1 1/2 0 −1/2 −1
FePd 1 0 −1/3 0 1
FePd3 1 −1/2 0 1/2 −1
Pd 1 −1 1 −1 1


En(r) =
Emax∑

m=0

vm(r)ξ
n
m, (3)

where m specifies a cluster and ξn
m is the correlation function defined as

ξn
m = 〈σp1σp2 · · · σpk

· · · σpm
〉, (4)

where σpk
is the spin operator, which takes either +1 or −1 depending upon the A or B atom

located at the lattice point specified by pk involved in the m-point cluster of the phase n, and
〈〉 suggests the ensemble average. Note that m = 0 corresponds to the null cluster. Although
mathematical details are not provided in this report, it is proved [9] that a set of correlation
functions spans the orthonormal bases in the thermodynamic configuration space, assuring the
validity of the present expansion.

In the alloy thermodynamics, cluster probabilities are often employed to describe the
atomic configuration. For instance, xi and yij are most often encountered to represent point
and pair cluster probabilities, respectively, of finding an atomic configuration specified by
subscript(s). One can readily prove that these cluster probabilities are interrelated with a set of
correlation functions through linear transformation [10,11]. Instead of detailed mathematical
discussions, we simply provide the following relationships, and interested readers should
consult the original articles:

xi = 1
2 {1 + iξ1} (5)

and

yij = 1

22
{1 + (i + j)ξ1 + ijξ2} (6)

where i and j take either +1 or −1 for A and B atoms, respectively.
The values of correlation functions for the phases of interest in this study are provided in

table 1. One sees that {ξn
m} constitutes 5 × 5 matrix and it is readily confirmed that this is a

regular matrix. The non-singularity of the matrix, {ξn
m}, is further guaranteed by the fact that

the atomic arrangement of any phase n considered above cannot be geometrically synthesized
by the combination of those of other phases involved in the table. Then, the matrix inversion
of equation (3) yields the effective interaction energies,

vm(r) =
4∑

n=0

{ξn
m}−1


En(r). (7)

The upper limit of the summation, Emax, in equation (3) specifies the largest cluster
participating in the expansion. Since {ξn

m} is the 5×5 matrix and the biggest cluster considered is
the tetrahedron cluster as tabulated in table 1, Emax should be mathematically four, representing
a nearest-neighbour tetrahedron cluster. Except for such a mathematical condition, the criterion
of the choice of Emax is not well established, but in view of the fact that the contribution of the
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Table 2. Equilibrium properties (equilibrium lattice parameter a0, bulk modulus B0 and pressure
derivative of the bulk modulus B ′) and magnetic moments of five ordered phases by present
calculation, and comparison with experimental data. It should be noted that Fe3Pd is a hypothetical
compound.

a0 (Å) B0 (GPa) B ′ M (µB/atom)

Fe calc.—fm 3.485 198.9 6.6 1.05
calc.—nm 3.449 298.7 7.1
exp. 3.648 [13], 3.666 [13] 168.3 [14]

Fe3Pd calc.—fm 3.740 155.9 3.9 2.16 (Fe: 2.76, Pd: 0.36)
calc.—nm 3.608 246.1 4.0

FePd calc.—fm a = 3.809, c = 3.771 184.4 2.9 1.65 (Fe: 2.94, Pd: 0.35)
calc.—nm a = 3.733, c = 3.643 215.6 4.6
exp. a = 3.852, c = 3.723 [13] 170 [15] 1.49 [15]

a = 3.855, c = 3.714 [13]
other calc. a = 3.732, c = 3.672 [18] 1.66 (Fe: 2.98, Pd: 0.34) [18]

FePd3 calc.—fm 3.895 177.1 5.7 1.08 (Fe: 3.32, Pd: 0.34)
calc.—nm 3.847 194.4 5.2
exp. 3.848 [13], 3.855 [13] 1.10 (Fe: 2.70, Pd: 0.57) [16]

0.97(Fe: 2.86, Pd: 0.34) [17]

Pd calc.—fm 3.931 182.2 5.4 0.18
calc.—nm 3.931 182.0 5.4
exp. 3.887 [13], 3.890 [13] 180.8 [14]

energies from truncated clusters are automatically renormalized in the extracted energies of
smaller clusters, the convergence of the extracted effective cluster interaction energies should
be carefully examined. This is discussed in the following section.

3. Results and discussion

By fitting the calculated total energies versus volume for various phases to Murnaghan’s
equation of state [12], we derived equilibrium properties such as lattice parameter a0, bulk
modulus B0 and the pressure derivative of the bulk modulus B ′ from the equation of state. The
results are summarized in table 2, together with magnetic moments and available experimental
data [13–17]. Although the experimental data scatter somewhat, the agreements between our
theoretical values and the experimental ones are fairly good. These are particularly pronounced
for fm (spin-polarized calculation).

Shown in figures 1(a) and (b) are total energies, 
En (r), of five phases as a function
of lattice constant, r , obtained by spin-polarized and non-polarized FLAPW calculations,
respectively. Drawn by a broken curve in figure 1(a) is 
Ebcc

Fe4
(r), which defines the energy

reference state of Fe4. We note that the calculated lattice constant of bcc-Fe is 5.36 (au), which
is quite small as compared with those of the other fcc-based phases. In order to facilitate
the comparison of heats of formation of all the phases, we converted this value to an fcc-
equivalent keeping the same atomic volume. One can clearly see that the spin-polarized
calculation (figure 1(a)) predicts the correct tendency of the experimental phase diagram i.e.
both the appearance of FePd and FePd3 and the disappearance of Fe3Pd. It is noted that the
total energies EFe4−nPdn

(r) for Fe4−nPdn (n = 0–3) with nm state are far higher than those
with fm state. Hence, if we employ the same segregation limit in figure 1(a) keeping the
same energy scale, a comparison for non-polarized calculations is obscured. Then, again
in order to facilitate comparison for non-polarized calculation, we adopt the concentration
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Figure 1. Heats of formation of Fe,Fe3Pd,FePd,FePd3 and Pd obtained by (a) spin-polarized
and (b) non-polarized calculations as a function of lattice constant (atomic unit). The segregation
limits are defined as the concentration average of total energies of bcc-Fe (fm) and Pd in (a), while
those of fcc-Fe (nm) and Pd for (b). In (a) heats of formation of bcc-Fe (fm) are plotted by a broken
curve after converting the lattice constant.

Table 3. Fitting parameters of heats of formation into Lennard-Jones-type potential via equation (2).

an(×105) bn(×102) cn

Fe 1.9914 5.4245 0.3792
Fe3Pd 2.9778 6.3843 0.3502
FePd 3.8528 7.7429 0.3843
FePd3 5.2731 9.7599 0.4476
Pd 5.8723 10.514 0.4706

average of EFe4 with nm state and EPdn
as the segregation limit. In view of the fact that

the total energy of fcc-Fe with nm state is far larger than those of fcc- and bcc-Fe with fm
state, figure 1(b) suggests that the non-polarized calculation destabilizes all the ordered phases.
These results clearly indicate the importance of magnetism for the phase stability in the Fe–
Pd system. Hence, hereafter, our main focus is placed only on the results of spin-polarized
calculation. The coefficient terms, an, bn and cn in equation (2) for each phase n are tabulated
in table 3.
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FePd-L1
0
 (fm)

v = 92165 (au3 / atom)

Figure 2. Total energy of L10 ordered phase as a function of tetragonality c/a.

As was pointed out at the beginning of the previous section, it is most desirable to
separate out the magnetic interaction energies from the total heats of formation obtained above.
The interplay between magnetic interaction and chemical interaction determines the relative
position of the locus of Curie temperature and the phase boundary, which provides a clue to
analyse the effects of magnetism on the order–disorder transition behaviour. Also, detailed
calculations of magnetic interaction energies should be useful and desirable to understand the
origin of the strong magnetocrystalline anisotropy of FePd [18], which has been attracting broad
attention to develop magneto-optical devices. Such a calculation of magnetic interactions is
initiated and will be reported elsewhere.

It is well known that tetragonality is often associated with the L10 ordered phase. Then
the additional calculation is also attempted to obtain total energies of L10 ordered phase as a
function of the tetragonality θ = c/a, where a and c are the lattice constants of a tetragonal
phase in the x (and y) and z directions, respectively. Note that in this coordinate system, (001)
planes are alternatively occupied by either Fe or Pd atoms. The results are demonstrated in
figure 2. One sees that the minimum appears at θ ≈ 0.99, which is in good agreement with
the experimental value of 0.96–0.97 [13]. In view of the closeness to unity of the calculated θ ,
the following calculations and analyses are performed by neglecting the tetragonality.

Based on equation (7), CEM is operated on the total energies, and a set of effective cluster
interaction energies, {vm(r)}, is extracted. The results are shown in figure 3. One can see that
three- and four-body interaction energies are quite small as compared with the pair interaction
energy, which also confirms the convergence of the expansion. The major contribution of
the pair interaction energy is a characteristic of a metallic alloy system of which cohesion is
generally dominated by central forces.

The alternative first-principles approach to alloy thermodynamics including the calculation
of a phase diagram is to start with the total-energy calculation for a complete random alloy
by the coherent potential approximation (CPA) [19] followed by the generalized perturbation
method (GPM) [20] to extract pair-wise interaction energies. Recent detailed investigation [21]
on Coulomb energies in alloys points out the importance of the interatomic Coulomb energy
and suggests that the long-range nature of the Coulomb interaction is well incorporated in the
charge-consistent CPA [22]. In contrast, the present approach within the CEM is limited to
the nearest-neighbour cluster interactions, and all the long-range pair interactions as well as
many-body interactions beyond a nearest-neighbour tetrahedron cluster are renormalized in
the extracted effective interactions. Hence, the details of atomic interactions may be obscured
in the present CEM. Yet, two major reasons to employ the present scheme are addressed.
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Figure 3. Effective cluster interaction energies up to the nearest-neighbour tetrahedron cluster. vi
represents an i-point cluster and i = 0 corresponds to a null cluster.

The first one is rather technical. The eventual purpose of the present investigation is to
calculate a phase diagram, and a set of effective cluster interaction energies obtained here are
incorporated into cluster variation method (hereafter CVM) [23]. Unfortunately, however, even
the highest level of approximation of the CVM is only capable of incorporating interactions
up to the fourth-nearest-neighbour pair. The common practice of the CVM is to employ the
tetrahedron approximation in which cluster interactions and correlations up to the nearest-
neighbour tetrahedron cluster can be considered. Hence, in view of such a limitation imposed
by CVM, the present expansion is truncated at the nearest-neighbour tetrahedron cluster. The
second reason is that, in the earlier investigation of the ground-state analysis [24], it was
demonstrated that both L10 and L12 ordered phases, which are our main interests, can be
stabilized within the nearest-neighbour pair interaction energy. Although such a ground-state
analysis provides merely a necessary condition of the stability for an Ising system and does
not fully justify the applicability to a realistic alloy system, a set of effective cluster interaction
energies obtained by the present CEM can be regarded as a minimum meaningful set. One way
to critically examine the validity of the present set is to carry out the calculation of the phase
diagram. Our preliminary study yields 1080 K for the L10-disorder transition temperature [4]
while the experimental value is 1023 K. This is in fairly reasonable agreement and partly
resolves the present concern of the convergence of CEM. Yet, it is desirable to investigate
the effects of long-range interactions either by employing CPA or by applying the CEM to an
extended set of ordered phases. In particular, the former can be combined with Ginzburg–
Landau theory to evaluate atomic displacement and ordering energies associated with phase
equilibria of two ordered phases with different geometrical lattices [25]. Together with the
calculated Fermi surface of a disordered phase, CPA is able to elucidate the electric origin of
the phase equilibria.

Within a pair interaction model, the effective pair interaction energy is equivalent to
the interaction parameter � of thermo-chemistry calculations based on the regular solution
model [26]. It has been claimed that the sign of � uniquely determines the tendency of
stability i.e. phase separation for � < 0 and ordering for � > 0. One can see that this is not
the case. Even for positive v2 over the entire lattice constants covering from Fe to Pd, both
phase separation and ordering coexist in the present Fe–Pd system. It should be emphasized
that the actual tendency is determined not uniquely by v2 but by 
E.
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(This figure is in colour only in the electronic version)

It is interesting to separate the heats of formation of an ordered phase n ( = 1, 2
and 3), 
En (rn), into the elastic energy contribution, 
Eel

n , and chemical energy contribution,

Echem

n , which are defined, respectively, as


Eel
n = 
E∗

Fe(rn) + 
E∗
Pd(rn) (8)

and


Echem
n = 
E∗

n(rn) − 
Eel
n . (9)

It is noted that 
E∗
n(rn) are the heats of formation defined with respect to the segregation limit

of fcc-Fe (ferro) and Pd, and 
E∗
n(rn) and 
En(rn) defined by equation (1) are related through


En(rn) = 
E∗
n(rn) +

4 − n

4
δ (10)

with

δ = EFe4(r0) − Ebcc
Fe4

(rbcc). (11)

Hence, the elastic energy is defined as the energy expended to form a specified ordered
compound Fe4−nPdn by expanding Fe and contracting Pd to the equilibrium lattice constant
rn, while the chemical energy is the remaining contribution in the heats of formation. The
calculated results are shown in figure 4. Note that total, elastic and chemical energies are
demonstrated by solid, grey and open bars, respectively, from left to right.

The elastic energy is always positive by definition and this energy causes the phase
separation, while the chemical energy is negative for all the phases, which implies that the
system has an intrinsically large driving force of ordering. Such a tendency is cancelled by an
opposite large contribution of elastic energy for Fe3Pd(n = 1), resulting in the positive total
energy.

The heat of formation for a random solid solution is calculated. At a complete random
state, the m-body correlation function ξ rand

m can be given as a simple product (m-tuple) of the
point correlation function ξ1. Hence, equation (3) is transformed for a random solid solution
as


Erand(r, x) =
Emax=4∑

m=0

vm(r)(ξ1)
m =

Emax=4∑

m=0

vm(r)(1 − 2x)m. (12)
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In the last equality of equation (12), the definition of the point correlation function in terms of
concentration of Pd, x, is employed via equation (5). In order to minimize 
Erand(r, x) with
respect to the lattice constant, we further take a first-order derivative of equation (12) to equate
with the external pressure, pex, which is virtually null,

∂
Erand(r)

∂V
= −p = −pex

∼= 0, (13)

where the volume, V , is related to the lattice constant through V = r3 for a cubic crystal.
Equations (12) and (13) determine the equilibrium lattice constant rrand and heats of

formation 
Erand(rrand, x) for a random solid solution as a function of concentration. The
concentration dependence of 
Erand(rrand, x) is shown in figure 5. Interestingly, the heat of
formation is positive in the Fe-rich portion while it is negative in the Pd-rich portion. Together
with the positive heats of formation of Fe3Pd, a strong immiscible tendency is confirmed in the
Fe-rich portion. This is believed to lead to the breakdown of the mechanical stability criterion
given by ∂p/∂V < 0. The calculation of the pressure–volume curve, however, demands an
explicit free energy formula. The details of mechanical stability of the Fe–Pd system are
discussed in a future report together with a phase diagram [4].

Finally, densities of states (DOSs) are demonstrated in figures 6(a)–(c) for Fe3Pd,FePd
and FePd3, respectively. A characteristic feature one can observe is that Fermi energy EF is
located near the peak of the DOS for Fe3Pd, while those of FePd and FePd3 are either in the
dip (FePd3) or close to the dip (FePd) of the DOS. The global trend of the phase stability of
each ordered phase is, therefore, qualitatively explained by the structure effects of DOS. A
quantitative analysis for FePd suggests that the energy difference between EF and the dip is
0.028 Ryd, which is to be filled by an additional 0.502 electrons (0.112 electrons of up spin
and 0.39 electrons of down spin), resulting in the electron per atom ratio of 9.25, which is
between 9.0 of FePd and 9.50 of FePd3. If one may take the rigid-band view, the analysis
above implies that the L10 ordered phase is more stabilized by increasing the content of Pd.
This may provide a clue to understand the shift of congruent composition of the L10–disorder
transition of an experimental phase diagram. We, however, still need more careful analyses
including a phase diagram calculation at finite temperatures as well as critical re-assessment of
experimental phase diagrams before deriving definite conclusions. These will be undertaken
in the subsequent report [4].
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